EE105
 Microelectronic Devices and Circuits: MOS Large Signal Model and Bias Circuits

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

Saturation Region ($\mathrm{v}_{\mathrm{DS}}>\mathrm{v}_{\mathrm{ov}}$)

Drain Current vs Gate Voltage

In Saturation Region

$$
\begin{aligned}
& i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L} v_{O V}^{2} \\
& =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t n}\right)^{2}
\end{aligned}
$$

To experimentally determine $V_{t n}$: Measure and plot $\sqrt{i_{D}}$ versus $v_{G S}$ $\sqrt{i_{D}}=\sqrt{\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}}\left(v_{G S}-V_{t n}\right)$
$V_{t n}=$ intercept with horizontal axis

Analog Voltage Amplifier

- DC bias at Quiescent (Q) point
- Small-signal input superimposed on a DC bias voltage
- Symbol used in this course:

$$
v_{G S}=V_{G S}+v_{g s}
$$

- Need to know the transistor's I-V characteristics to find the voltage gain (and other properties of the amplifier)

Diode-Connected Transistor

With Gate connected to Drain, it becomes a 2-terminal device.
This is called "diode-connected transistor"
In this configuration, the transistor is always in "Saturaiton".
Its I-V relationship is:
$i=I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L} v_{O V}^{2}$
$v_{G S}=v_{D S}=v$
$v_{O V}=v_{G S}-V_{t n}=v-V_{t n}$
$i=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v-V_{t n}\right)^{2}$

Example Circuit (1)

Design Problem:

Determine R_{S} and R_{D} such that the NMOS is biased at $I_{D}=0.4 \mathrm{~mA}$ and $V_{D}=0.5 \mathrm{~V}$. The NMOS has $V_{t}=0.7 \mathrm{~V}, \mu_{n} C_{o x}=100 \mu \mathrm{~A} / V^{2}$, $L=1 \mu m$ and $\mathrm{W}=32 \mu m$.

Solution:
$R_{D}=\frac{V_{D D}-V_{D}}{I_{D}}=\frac{2.5-0.5}{0.4}=5 \mathrm{k} \Omega$
$I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L} v_{O V}^{2}=0.4 m A \rightarrow v_{O V}=0.5 \mathrm{~V}$
(channel length modulation can usually be ignored
when solving DC bias)

$$
\begin{aligned}
& v_{G S}=V_{t}+v_{O V}=0.7+0.5=1.2 \mathrm{~V} \\
& V_{G}=0 \text { (grounded) --> } V_{S}=-1.2 \mathrm{~V} \\
& R_{D}=\frac{V_{S}-V_{S S}}{I_{D}}=\frac{-1.2-(-2.5)}{0.4}=3.25 \mathrm{k} \Omega
\end{aligned}
$$

Example Circuit (2)

The resistor divider is a common bias circuit.
To solve the DC bias condition, it means to solve $I_{D}, V_{D S}, V_{G S}$
The NMOS has $V_{t n}=1 V, k_{n}=\mu_{n} C_{o x} \frac{W}{L}=1 \mathrm{~mA} / V^{2}$
First, solve $V_{G}=V_{D D} \frac{R_{G 2}}{R_{G 1}+R_{G 2}}=10 \frac{5}{5+5}=5 \mathrm{~V}$
$V_{G S}=5-I_{D} R_{S}=5-6 I_{D} \quad$ (with I_{D} in mA)
Next, assume the transistor is in saturation:
$I_{D}=\frac{1}{2} k_{n} v_{O V}^{2}=0.5\left(V_{G S}-V_{t n}\right)^{2}=0.5\left(5-6 I_{D}-1\right)^{2}$
$18 I_{D}^{2}-25 I_{D}+8=0 \quad-->I_{D}=0.89 \mathrm{~mA}$ or 0.5 mA
If $I_{D}=0.89 \mathrm{~mA}, V_{G S}=-0.34 \mathrm{~V}$, NMOS will be cut-off
--> not a physical solution.
If $I_{D}=0.5 \mathrm{~mA}, V_{G S}=2 V, V_{O V}=2-1=1 V$
$V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)=10-6=4 V>V_{O V}$
Saturation assumption verified!

PMOS I-V Curves

$$
\begin{aligned}
& V_{D S} \frac{\ldots}{-5} V_{G S}=-1 V \ldots \\
& V_{G S}=-2 V \\
& V_{G S}=-3 V \\
& V_{G S}=-4 V
\end{aligned}
$$

Right Side Up!

$$
I_{S D}=\left|I_{D S}\right|
$$

PMOS I-V Equations

Saturation Region:
Use same equation as NMOS but add absolute sign on all voltages since most voltages are negative:

$$
V_{t p}<0, v_{D S}<0, \mathrm{v}_{G S}<0
$$

$$
\begin{aligned}
& i_{D}=\frac{1}{2} \mu_{p} C_{o x}\left(\frac{W}{L}\right)\left(\left|v_{G S}\right|-\left|V_{t p}\right|\right)^{2} \\
& =\frac{1}{2} \mu_{p} C_{o x}\left(\frac{W}{L}\right) v_{O V}^{2}
\end{aligned}
$$

So either use $v_{S D}$ or $\left|v_{D S}\right|$

Example Circuit (3)

Design Problem:

Design the circuit such that $I_{D}=0.5 \mathrm{~mA}$ and $V_{D}=3 \mathrm{~V}$.
PMOS has $V_{t p}=-1 V, \mu_{p} C_{o x}(W / L)=1 m A / V^{2}$.
Also find the maximum R_{D} for PMOS to remain in Saturation

Solution:
$I_{D}=\frac{1}{2} k_{p} V_{O V}^{2}=0.5 m A \rightarrow\left|V_{O V}\right|=1 V$
$\left|V_{G S}\right|=\left|V_{t p}\right|+\left|V_{O V}\right|=1+1=2 V$
$V_{S}=5 \mathrm{~V} \quad-->V_{G}=3 \mathrm{~V}$
We can choose $\mathrm{R}_{G 1}=2 M \Omega$ and $\mathrm{R}_{G 2}=3 M \Omega$
Saturation: $V_{D} \leq 5-\left|V_{O V}\right|=4 V$

$$
R_{D, \max }=\frac{V_{D, \max }}{I_{D}}=\frac{4}{0.5}=8 \mathrm{k} \Omega
$$

Finite Output Resistance due to Channel Length Modulation

When $v_{D S}=v_{O V}$, the channel pinch of near the Drain. With further increase in $v_{D S}$, the pinch off point moves slowly towards the source, effectively reducing the channel length from L to $L-\Delta L$ (this is called "channel length modulation"):
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L-\Delta L}\left(v_{G S}-V_{t n}\right)^{2}$
The continual increase of i_{D} with $v_{D S}$ is modeled by
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t n}\right)^{2}\left(1+\lambda v_{D S}\right)$

Output Resistance of MOSFET

$$
\begin{aligned}
& i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t n}\right)^{2}\left(1+\lambda v_{D S}\right) \\
& r_{o}=\left(\frac{\partial v_{D S}}{\partial i_{D}}\right)_{v_{G S}=V_{G S}}=\left(\frac{\partial i_{D}}{\partial v_{D S}}\right)_{v_{G S}=V_{G S}}^{-1}=\frac{1}{\lambda\left(\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t n}\right)^{2}\right)} \approx \frac{1}{\lambda I_{D}}
\end{aligned}
$$

$r_{o}=\frac{1}{\lambda I_{D}}$ where $I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t n}\right)^{2}$ is the DC bias current at Drain.

