EE105

Microelectronic Devices and Circuits: MOS Large Signal Model and Bias Circuits

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Saturation Region (v_{DS} > v_{OV})

This is called the "Triode Region"

This is called "Saturation Region"

Drain Current vs Gate Voltage

In Saturation Region

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{OV}^2$$
$$= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{tn})^2$$

To experimentally determine V_{tn} : Measure and plot $\sqrt{i_D}$ versus v_{GS} $\sqrt{i_D} = \sqrt{\frac{1}{2}\mu_n C_{ox}\frac{W}{L}} (v_{GS} - V_{tn})$ V_{tn} = intercept with horizontal axis

Analog Voltage Amplifier

 v_{DS}

- DC bias at Quiescent (Q) point
- Small-signal input superimposed on a DC bias voltage
- Symbol used in this course:

$$v_{GS} = V_{GS} + v_{gs}$$

 Need to know the transistor's I-V characteristics to find the voltage gain (and other properties of the amplifier)

Diode-Connected Transistor

With Gate connected to Drain, it becomes a 2-terminal device.This is called "diode-connected transistor"In this configuration, the transistor is always in "Saturaiton".Its I-V relationship is:

$$i = I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} v_{OV}^2$$
$$v_{GS} = v_{DS} = v$$
$$v_{OV} = v_{GS} - V_{tn} = v - V_{tn}$$
$$i = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (v - V_{tn})^2$$

Example Circuit (1)

Design Problem:

Determine R_s and R_D such that the NMOS is biased at $I_D = 0.4mA$ and $V_D = 0.5V$. The NMOS has $V_t = 0.7V$, $\mu_n C_{ox} = 100 \mu A / V^2$, $L = 1 \mu m$ and W = $32 \mu m$.

Solution:

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}} = \frac{2.5 - 0.5}{0.4} = 5k\Omega$$

$$I_{D} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}v_{ov}^{2} = 0.4mA \implies v_{ov} = 0.5V$$
(channel length modulation can usually be ignored when solving DC bias)
$$v_{GS} = V_{t} + v_{ov} = 0.7 + 0.5 = 1.2V$$

$$V_{G} = 0 \text{ (grounded)} \implies V_{S} = -1.2V$$

$$R_{D} = \frac{V_{S} - V_{SS}}{I_{D}} = \frac{-1.2 - (-2.5)}{0.4} = 3.25k\Omega$$

Example Circuit (2)

The resistor divider is a common bias circuit. To solve the DC bias condition, it means to solve I_D, V_{DS}, V_{GS} The NMOS has $V_{tn} = 1V$, $k_n = \mu_n C_{ox} \frac{W}{I} = \frac{1mA}{V^2}$ First, solve $V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} = 10 \frac{5}{5 + 5} = 5V$ $V_{GS} = 5 - I_D R_S = 5 - 6I_D$ (with I_D in mA) Next, assume the transistor is in saturation: $I_D = \frac{1}{2}k_n v_{OV}^2 = 0.5(V_{GS} - V_{tn})^2 = 0.5(5 - 6I_D - 1)^2$ $18I_D^2 - 25I_D + 8 = 0 \implies I_D = 0.89 \text{mA or } 0.5 \text{mA}$ If $I_D = 0.89 mA$, $V_{GS} = -0.34V$, NMOS will be cut-off --> not a physical solution. If $I_D = 0.5 \text{mA}$, $V_{GS} = 2V$, $V_{OV} = 2 - 1 = 1V$ $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 6 = 4V > V_{OV}$ Saturation assumption verified !

PMOS I-V Equations

Example Circuit (3)

 $V_{DD} = +5 \text{ V}$ R_{G1} $\circ V_D = +3$ R_{G2} $\gtrsim R_D$ $l_D = 0.5 \text{ mA}$

Design the circuit such that $I_D = 0.5mA$ and $V_D = 3V$. PMOS has $V_{tp} = -1V$, $\mu_p C_{ox}(W/L) = 1mA/V^2$. Also find the maximum R_D for PMOS to remain in Saturation

Solution:

$$V \quad I_D = \frac{1}{2} k_p V_{OV}^2 = 0.5mA \quad \longrightarrow \quad |V_{OV}| = 1V$$

$$|V_{GS}| = |V_{tp}| + |V_{OV}| = 1 + 1 = 2V$$

$$V_S = 5V \quad \longrightarrow \quad V_G = 3V$$

We can choose $R_{G1} = 2M\Omega$ and $R_{G2} = 3M\Omega$
Saturation: $V_D \le 5 - |V_{OV}| = 4V$

$$R_{D,max} = \frac{V_{D,max}}{I_D} = \frac{4}{0.5} = 8k\Omega$$

Finite Output Resistance due to Channel Length Modulation

When $v_{DS} = v_{OV}$, the channel pinch of near the Drain. With further increase in v_{DS} , the pinch off point moves slowly towards the source, effectively reducing the channel length from *L* to $L - \Delta L$ (this is called "channel length modulation"):

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L - \Delta L} (v_{GS} - V_{tn})^2$$

The continual increase of i_D with v_{DS} is modeled by

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(v_{GS} - V_{tn} \right)^2 \left(1 + \lambda v_{DS} \right)$$

Output Resistance of MOSFET

